使用Tensorflow+OpenCV構(gòu)建會(huì)玩石頭剪刀布的AI
我使用了Python的OpenCV庫(kù)進(jìn)行所有與相機(jī)相關(guān)的操作,所以這里的label指的是圖像屬于哪個(gè)類,根據(jù)標(biāo)簽,圖像保存在適當(dāng)?shù)哪夸浿。ct和maxCt是用來(lái)保存圖像的起始索引和最終索引,剩下的是標(biāo)準(zhǔn)的OpenCV代碼,用于獲取網(wǎng)絡(luò)攝像頭源并將圖像保存到目錄中。需要注意的一點(diǎn)是,我所有的圖片維數(shù)都是300 x 300的。運(yùn)行此目錄樹(shù)后,我的目錄樹(shù)如下所示。
C:.
├───paper
│ paper0.jpg
│ paper1.jpg
│ paper2.jpg
│
├───rock
│ rock0.jpg
│ rock1.jpg
│ rock2.jpg
│
└───scissor
scissor0.jpg
scissor1.jpg
scissor2.jpg
如果你引用的是Github存儲(chǔ)庫(kù)(https://github.com/HOD101s/RockPaperScissor-AI-) ,則getData.py會(huì)為你完成這項(xiàng)工作!預(yù)處理我們的數(shù)據(jù)我們需要使用圖像,而計(jì)算機(jī)可以識(shí)別數(shù)字,因此,我們將所有圖像轉(zhuǎn)換為它們各自的矢量表示,另外,我們的標(biāo)簽尚待生成,由于已建立的標(biāo)簽不能是文本,因此我使用shape_to_label字典為每個(gè)類手動(dòng)構(gòu)建了“獨(dú)熱編碼”表示。
DATA_PATH = sys.a(chǎn)rgv[1] # Path to folder containing data
shape_to_label = {'rock':np.a(chǎn)rray([1.,0.,0.,0.]),'paper':np.a(chǎn)rray([0.,1.,0.,0.]),'scissor':np.a(chǎn)rray([0.,0.,1.,0.]),'ok':np.a(chǎn)rray([0.,0.,0.,1.])}
arr_to_shape = {np.a(chǎn)rgmax(shape_to_label[x]):x for x in shape_to_label.keys()}
imgData = list()
labels = list()
for dr in os.listdir(DATA_PATH):
if dr not in ['rock','paper','scissor']:
continue
print(dr)
lb = shape_to_label[dr]
i = 0
for pic in os.listdir(os.path.join(DATA_PATH,dr)):
path = os.path.join(DATA_PATH,dr+'/'+pic)
img = cv2.imread(path)
imgData.a(chǎn)ppend([img,lb])
imgData.a(chǎn)ppend([cv2.flip(img, 1),lb]) #horizontally flipped image
imgData.a(chǎn)ppend([cv2.resize(img[50:250,50:250],(300,300)),lb]) # zoom : crop in and resize
i+=3
print(i)
np.random.shuffle(imgData)
imgData,labels = zip(*imgData)
imgData = np.a(chǎn)rray(imgData)
labels = np.a(chǎn)rray(labels)
當(dāng)我們根據(jù)類將圖像保存在目錄中時(shí),目錄名用作標(biāo)簽,該標(biāo)簽使用shape_to_label字典轉(zhuǎn)換為獨(dú)熱表示。在我們遍歷系統(tǒng)中的文件以訪問(wèn)圖像之后,cv2.imread()函數(shù)返回圖像的矢量表示。我們通過(guò)翻轉(zhuǎn)圖像并放大圖像來(lái)進(jìn)行一些手動(dòng)的數(shù)據(jù)增強(qiáng),這增加了我們的數(shù)據(jù)集大小,而無(wú)需拍攝新照片,數(shù)據(jù)增強(qiáng)是生成數(shù)據(jù)集的關(guān)鍵部分。最后,圖像和標(biāo)簽存儲(chǔ)在單獨(dú)的numpy數(shù)組中。cv2.imread()函數(shù)https://www.geeksforgeeks.org/python-opencv-cv2-imread-method/更多關(guān)于數(shù)據(jù)增強(qiáng)的信息。https://towardsdatascience.com/data-augmentation-for-deep-learning-4fe21d1a4eb9通過(guò)遷移學(xué)習(xí)建立我們的模型:在處理圖像數(shù)據(jù)時(shí),有許多經(jīng)過(guò)預(yù)訓(xùn)練的模型可供使用,這些模型已經(jīng)在具有數(shù)千個(gè)標(biāo)簽的數(shù)據(jù)集上進(jìn)行了訓(xùn)練,由于這些模型通過(guò)其應(yīng)用程序api的Tensorflow和Keras分布,我們可以使用這些模型,這使得在我們的應(yīng)用程序中包含這些預(yù)先訓(xùn)練的模型看起來(lái)很容易!
總之,遷移學(xué)習(xí)采用的是經(jīng)過(guò)預(yù)訓(xùn)練的模型,并且不包含進(jìn)行最終預(yù)測(cè)的最終層,能夠區(qū)分這種情況下圖像中的特征,并將這些信息傳遞給我們自己的Dense神經(jīng)網(wǎng)絡(luò)。為什么不訓(xùn)練你自己的模型呢?完全取決于你!然而,使用遷移學(xué)習(xí)可以在很多時(shí)候使你的進(jìn)步更快,從某種意義上說(shuō),你避免了重復(fù)造輪子。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
-
機(jī)器人奧運(yùn)會(huì)戰(zhàn)報(bào):宇樹(shù)機(jī)器人摘下首金,天工Ultra搶走首位“百米飛人”
-
存儲(chǔ)圈掐架!江波龍起訴佰維,索賠121萬(wàn)
-
長(zhǎng)安汽車母公司突然更名:從“中國(guó)長(zhǎng)安”到“辰致科技”
-
豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
-
字節(jié)AI Lab負(fù)責(zé)人李航卸任后返聘,Seed進(jìn)入調(diào)整期
-
員工持股爆雷?廣汽埃安緊急回應(yīng)
-
中國(guó)“智造”背后的「關(guān)鍵力量」
-
小米汽車研發(fā)中心重磅落地,寶馬家門口“搶人”
最新活動(dòng)更多
-
即日-9.16點(diǎn)擊進(jìn)入 >> 【限時(shí)福利】TE 2025國(guó)際物聯(lián)網(wǎng)展·深圳站
-
10月23日火熱報(bào)名中>> 2025是德科技創(chuàng)新技術(shù)峰會(huì)
-
10月23日立即報(bào)名>> Works With 開(kāi)發(fā)者大會(huì)深圳站
-
10月24日立即參評(píng)>> 【評(píng)選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評(píng)選
-
11月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
12月18日立即報(bào)名>> 【線下會(huì)議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
推薦專題
- 1 先進(jìn)算力新選擇 | 2025華為算力場(chǎng)景發(fā)布會(huì)暨北京xPN伙伴大會(huì)成功舉辦
- 2 人形機(jī)器人,正狂奔在批量交付的曠野
- 3 宇樹(shù)機(jī)器人撞人事件的深度剖析:六維力傳感器如何成為人機(jī)安全的關(guān)鍵屏障
- 4 解碼特斯拉新AI芯片戰(zhàn)略 :從Dojo到AI5和AI6推理引擎
- 5 AI版“四萬(wàn)億刺激”計(jì)劃來(lái)了
- 6 騰訊 Q2 財(cái)報(bào)亮眼:AI 已成第二增長(zhǎng)曲線
- 7 2025年8月人工智能投融資觀察
- 8 9 Manus跑路,大廠掉線,只能靠DeepSeek了
- 10 a16z最新AI百?gòu)?qiáng)榜:硅谷頂級(jí)VC帶你讀懂全球生成式AI賽道最新趨勢(shì)